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We report on a method of constructing multidimensional biorthogonal interpo-
lating multiwavelets. The approach is based upon polynomial interpolati®{ in
(C. de Boor and A. RonMath. Comput58, 198 (1997)) and an extension of the
lifting scheme (J. Koveévic and W. SweldenslEEE Trans. Image Proces$,
No. 3, 480 (2000)). The constructed wavelets have compact support, are nearly
isotropic, and retain partial scale invariance leading to a fast and efficient multidi-
mensional wavelet transform. We demonstrate an implementation for these wavelets
of variable polynomial order up to four dimensions. Finally, we show that these
wavelets have a much sparser representation of discontinuous functions as com-
pared to tensor product wavelets, which allows for a more compact and efficient
representation. ( 2002 Eisevier Science (USA)

Key Words:multiwavelets; multidimensional; lifting scheme; polynonimal inter-
polation.

1. INTRODUCTION

Many problems in condensed matter theory, as well as in many other areas of phy:
are solved most conveniently within a variational minimization approach. This requir
the expansion of functions and operators in suitably chosen basis functions. In electr
structure calculations the choice of plane waves, atomic orbitals, muffin-tin orbitals
Gaussians [1, 4, 6, 24, 29] has led to the development of different schemes, with diffel
properties regarding speed, accuracy, and simplicity.

In order to keep the representation of functions and operators small we want to minin
the size of the basis set used in the variational ansatz. This is possible if the basis set s cls
adapted to the actual solution. Usually this is difficult to accomplish. In electronic structt
calculations, one would like expansions that work equally well for the interstitial part of tl
states, which are best described by plane wave like functions, and the atomic core pa
the states, which are best described by atomic orbital like functions, but poorly descri
by plane wave like functions. This problem is solved in various ways by the differe
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electronic structure schemes. For example, plane wave methods rectify it by replacing
atomic core region with a suitably chosen, smooth, pseudo-potential [25]. The muffin-
orbital methods address the problem by augmenting interstitial plane wave like functic
outside the atomic core region with atomic like solutions inside the atomic core region |
Another promising approach which recently has gained attention, and directly addre:
this problem, is the use of wavelets [5, 9, 19, 27, 36, 37]. The purpose of this repor
to describe a new class of wavelets which are well adapted to the problems in electrc
structure calculations. However, the constructed wavelets are quite general and should
a suitable basis for many different variational problems in physics.

A wavelet basis forms a basis for a multiresolution analysis (MRA). Since a wavelet ba
exists on many scales of resolution it can naturally and easily represent both small scales
rapidly changing functions, like the atomic core orbitals or the core part of the atomic valer
states, and large-scale structures like interstitial parts of the valence states. Another im
tant feature of the wavelet basis is the existence of fast algorithms, the pyramid algorit|
and the lifting scheme [10, 21, 33, 34]. These algorithms allow the calculation of the exp:
sion of functions to linear order, similar to the fast Fourier transform. Moreover, it has be
shown that a large class of operators is sparse in the wavelet representation [3N oeger-
resentation) and can therefore be treated very efficiently within a variational wavelet ans

A large body of work has been devoted to the construction of one-dimensional wavel
[11, 13, 14, 16] and it has been implicitly assumed that the extension to higher dimensi
should be done via the tensor product of the one-dimensional functions. However, there
many problems associated with this approach. If one takes a tensor product represent
of the higher dimensional scaling spaces Via= V! @ V1 ® ... ® V1, then the number
of different basis functions grows a$ PL0], whered is the dimension, and, since the basis
functions will be products of one-dimensional wavelets and scaling functions of the diff
ent scales, some of the multidimensional wavelets will be highly biased along coordin
directions, which is an undesirable property when expanding spherically symmetric fu
tions such as the atomic core states. Another disadvantage of the tensor product basis i
all scales also get mixed in the representation of operators, rendering them less spars
reducing their condition number [31]. This makes the implementation of the tensor prod
wavelet basis to higher dimensions undesirable.

In order to overcome these problems we would like to construct a nontensor prod
wavelet basis, as isotropic as possible, with liftable filters and compact support in multi
dimensions. Some nonseparable orthogonal wavelets have been constructed [2, 22, 28
which, unfortunately, are not easy to use in a computationally efficientimplementation. T
lifting scheme devised by KoeaVi¢ and Sweldens [21] is able to construct nonseparabl
wavelets in higher dimensions. Within their implementation the sampling lattices on diffe
entscales are distinct;i.e., there is no scale invariance. Unfortunately, this renders a cons
tive numerical analysis of differential operators difficult. However, one does notneedto g
up scale invariance totally, and it is possible to construct filters that repeat after a finite nt
ber of N scales. This implies that the sampling lattices, the lattices of points around whi
the scaling functions are centered, also repeat aftsteps. From a multiresolution point
of view such a construction is reminiscent of multiwavelets [20, 26, 32], where a d&t of
scaling function$¢}') i =1,..., N}spansthe scaling spa¢e. In the tensor product rep-
resentation one has one scaling function ghd 2 different wavelets functions in a dilation
of 29. In the construction scheme which we will devise in the present paper weNhdife
ferent types of scaling functions ahdifferent types of wavelets, where typicaly = d.
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In this paper we use a restricted lifting scheme involvind\aperiodic scale invariance
to construct a nontensor product MRA analysisL3{RY). In the first section, we give
a short introduction to wavelets and the lifting scheme. Next we introduce an unrec
nized relation between lifting and multiwavelets with a simple example in one dimensic
Then we generalize the scheme to higher dimensions. We present examples for sepe
and nonseparable nontensor product wavelet basis up to four dimensions and discuss
isotropy and compression properties. Finally, we discuss the ramifications and future
rections of the work. In the appendices, we present two practical algorithms, which
a natural outcome of the presented work (i) the in-place inverse wavelet transform wk
allows the calculation of the value of a function at a point, where the function is represen
in the wavelet basis and (ii) the top—down algorithm which allows for the adaptive wave
analysis of a function using a truncation algorithm similar to one devised by 2oah
[38], where as an example of the efficiently of the top—down algorithm, we present 1
wavelet transform of the potential generated by 32 arbitrarily placed point charges.

2. WAVELET THEORY

In this section, we first present a brief review of how to construct a multiresolutic
analysis, which generates a wavelet basis, in one dimension. Then, we present a
review of the lifting scheme and how it is related to, and generates, a MRA. Finally, in t
last section, we show how the lifting scheme can be used to construct multiwavelets,
we give a simple example. For a more detailed discussion on wavelets, we refer the re
to [10, 15, 23].

2.1. Multiresolution Analysis

Let us start by considering the decompositionLe{R) into a set of nested function
subspaces

Vis1CVjCVj... jez, 1)

where we associate with each subspsggea set of pointsy;. These subspaces form a
multiresolution analysis with the following properties:

1. f(x) eV} & f(2xX) € Vjq.

2. f(x)eVj & f(x+k) eVj:Vkey;.

3. UV, isdensein_»(R) andn;V; = {#}.

4. There exists for the scaling spadg a scaling functiong; (x) € V; such that the
collection

¢ (X +K):VK € yj (2)
forms a Riesz basis &f;,
V; = spari¢; (x + k) :k € y;}. (3)

There also existswavelet functiony; (x) which spans the detail spa¢g, the complement
of Vj IS Vj+1; ie.,
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and
Pw; = LR (5)
j
In the case of a biorthogonal basis, these properties also hold for the dual shaaad,
Wi;, but with the biorthogonality conditions [23],
\7j 1 Wj and Vj 1 Wj. (6)

Because of the properties of the multiresolution analysis, it is possible to show that
scaling and dual scaling functions obey a two-scale relation,

{ P(X) = 3o o (2x — k) -
() = S hkdp(2x — k)
and for the wavelet and dual wavelets we have the relations,
{ Y (X) =) Gk (2x — K) -
T =Y, Gkdp@x — k)’
with the biorthogonality condition,
&jk(x) 3jj Okk 0 ‘|
dx| - (B (X) Yjne(X)] = : 9)
/ Lﬁ,—k x)] R Tk [ 0 88y

Thehy, gk, A, andgk € l2(2) are the dual and nondual filter coefficients.
A wavelet transform of a function can be constructed via the pyramid algorithm [1(
Consider a function expanded on an arbitrary resolution staledx € [0, 1],

foo =Y fhe@x—k. (10)
k

The wavelet transform of this function can be computed by successive applications
Egs. (7) and (8) using the dual filters, and the inverse transform can be computed by
successive application of the nondual filters. The application of the filters is depicted
Fig. 1, where we are showing one step of the pyramid algorithm.

Analysis/WaveletTransform Synthesis/Inverse Wavelet Ttransform
)\j — A

FIG. 1. A diagram of the two-channel filter bank, which represents one step of the pyramid algorithm fol
biorthogonal MRA.
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2.2. The Lifting Scheme

One of the more elegant ways of generating a biorthogonal MRA is via the lifting schel
[21]. This method is straightforward to implement and can easily be adapted to multi
dimensions. The lifting scheme is constructed via three stagdit: predict,andupdate
First, let us start by considering a data sgtIn the first stage we split the data set into
two smaller disjoint subsets ; andy_1, whererg = y_1 UA_jandy_1NA_1 = {#}. The
simplest way of splitting the data is into the even and odd numbers. This is sometir
referred to as the lazy wavelet transform [21]. Next, let us use the datae_setp predict
the values of the other data set,, i.e.,

Y-1=PQ_1), (11)

whereP is the predict operator. This would allow us to replace the original data set wi
the subset._;. In practice, it is usually not possible to construct a predict operator whic
exactly predicty_; from A_;. Let us instead replace_; with the difference,

v =vy-1— PQ_1). (12)

The subsef™; now encodes how mugh ; deviates from the model on which the prediction
was constructed, a set of details. It is also a simple matter to recover the original date
by reversing the sign of Eq. (12). In many cases we would also like to preserve some of
properties of the original data s, into the new data set, ;. We can do this by devising
a new operator which uses; to updater_;,

A =1+ UGy, (13)

wherel isthe update operator. One nice property of the lifting scheme is thatthe inverse |
cessiseasytoaccomplish just by reversing the signs of Egs. (12) and (13), which is illustr:
in Fig. 2. The process depicted in Fig. 2 can also be interpreted as one step of the pyr:
algorithm, where the3’s are the scaling function expansion coefficients, andhis are
the wavelet functions expansion coefficients. This can be seen by realizing that the pro
depicted in Fig. 2 is also a biorthogonal MRA, as was depicted in Fig. 1, wherg the
form the resolution spaces and th¢’s form the detail spaces.

Another property of the lifting scheme is that the operations can be chained together.
allows the lifting scheme to be used to modify any existing wavelet transforms. Consi

Analysis/Wavlet-Transform Synthesis/Inverese Wavelet Transform

(+)

-

Aj—>| SPLIT * JOIN [—» )

F;

Y
)

FIG. 2. A diagram of the predict and update operations of the lifting scheme.
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Analysis/WaveletTransform Synthesis/Inverse Wavelet Ttransform
~ ,-m' w orig
G ) Y j-l G J

A
~ ori, s
() I B By

FIG. 3. A diagram of the modification of the filters using a predict operation.

Fig. 3, the predict step will modify the original filters by

I

j = A" Hj = H™ + P; G§™
X i (14)
G =G} —PrHY Gj =G

and similarly for an update step the original filters get modified by (not in figure)

Aj = A9 1 U;G™ H; = HO™
(15)

(@]

- _ Rorig . __ (orig %1 0rig
For the case where the original filters are the lazy wavelet transform (just splitting the d
sets), we can use Egs. (14) and (15) to deduce the new biorthogonal filters as

Hi=1+Uj1-P") H; =1+P

~ (16)
Gj=1-Pf G =1-Uj1d+Py).

The asterisks denote the complex conjugation of the filters, which is included for the g

eral case of complex coefficients. The basis functions associated with jgfnoe A5,

of the lifting scheme can easily be generated by the inverse pyramid algorithm, wh

{y"}jw = 8jj-0kw generates the wavelet; (x — k), and {15}« = §j;-8kw generates the

scaling functionp; (x — k). In the case where there is no update, the dual scaling functio

correspond to Dirac delta functions. The dual wavelet functions are sums of Dirac de

functions, and the nondual functions correspond to polynomial interpolating wavelets |

where the wavelets and scaling functions are related by

v =¢@2x—-1). 17)

Notice, that without the update the dual scaling and wavelet functions do not form a pro
basis ofL,(R), since Dirac delta functions are not square integrable. However, the prin
set forms a basis df,(R) and we will therefore still use the expression biorthogonal basi:
even if it is not strictly correct.

Inthe next section we show how the lifting scheme can be used to generate multiwave!
a connection which we have found to be very informative in our analysis.
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2.3. The Lifting Scheme and Multiwavelets

In this section we present a multiwavelet derived from lifting in one dimension. W
construct this by performing two consecutive subdivision and predict steps, where we r
choose the order of the two predict polynomials to be different. As usual in the liftir
scheme we start by defining a subdivision. The original lattifg is- Z, and we subdivide
into the scaling sel‘gb = 2I"p and the wavelet seIfol) = 2I'p + 1. This corresponds to
splitting the set of integers into even and odd numbers. Next, we split the lattice again |
the new scaling sdt® = 2I'; = 4T and the new wavelet sE{Y = 2I'; + 2 = 4y + 2.
The corresponding two-scale relations for the scaling functions are

P00 =¢@@0+ > PP @x—m)
mer{

p?x) =P @20+ Y PPp®2x —m),

mer?

(18)

where we have two separate scaling functighd (?) on different scales. TheY-@ are
the prediction coefficients of the lifting scheme. We can decouple Egs. (18)

$P00 =V @)+ Y PPePAx =20 + Y PPeVAx — 2
kel“,(f’ kel“,(ul’
+ > PORIeM(@Ex—2k—K)
kel'Y:ker?
PP =P @)+ ) PP (Ux — 2+ Y Ple®ax - 2
kel'2 ker‘(”l)
+ > PORYsPAx— 2K -k,

kel'Y:;ker?

(19)

which can be phrased in a typical multiwavelet form,
P (%) oD (4x — k)
®(x) = = H = Hi®(4x — k). 20
(X) <¢(Z)(x) EK: k 6@ @x — K Ek: kP (4x —K) (20)

The matriceddy are of the form
hd 0o
Ho=| ,
0 h?

1 k=0
1,2 2),(1 )
h(k) @ _ pk( ), (1) k e 1“1(”2) @ (21)
PV 15w BV @PED ke rp@

where

In a multiwavelet setting the functiogs®?- @ span the scaling spaces. The wavelets are che
sen from the interpolating algorithm gs (x) = ¢ (4x — 3) andy @ (x) = ¢p@ (4x — 3),
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and their two-scale relation in a multiwavelet form becomes

YD (x)
where
Sok+z O
Gy = . 23
“ ( 0 50k+3) 3)

The subdivision process above could have been continuddsteps withN different
filters. The above analysis would then lead to multiwavelets of multiplikityThe fully
generalized lifting scheme (no scale invariance of the filters) can then be viewed a
multiwavelet with infinitely many components.

3. MULTIWAVELETS IN MULTIPLE DIMENSIONS

In this section we extend the scheme from the previous section to higher dimensic
This allows us to construct a nontensor product MRA #iRY). We start by generalizing
the MRA toRY. Let us consider the decompositionlof(RY) into a set of nested subspaces
[23, 34].

...ijlcijVjJ’»l... j € Z, (24)

where we associate with each subspégea latticel'; € 29 defined ag’; = L; 29, where
L; is a nonsingulad x d matrix which generates the lattice, alj, is a nonsingular
d x d dilation matrix which projects us from the lattice associated Wifh; to the lattice
associated wit;; i.e.,

[y =Djulja. (25)
The subspaceg ; form a multiresolution analysis with the following properties:

1L fx) eVj < f(Djt1X) € Vjqa.

2. fTx) eVj & fx+k)eV;:VkeTj.

3. UjVjisdense irL,(RY) andn;V; = {#}.

4. There exists for the scaling spade a scaling functiong;(x) € Vj such that the
collection

Pi(x+Kk):Vk e T (26)
forms a Riesz basis of;
Vi =sparg;(x+k):k eTj}. (27)

There also existswavelet function’; (x) which spans the detail spadg;, the complement
of Vj € Vj 1 such that

Viin=W;@Vj, W;.LlVj, (28)
and

Pw; = LR (29)
j
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Again, in the case of a biorthogonal basis, these properties also hold for the dual spe
Vj andWj, but with the biorthogonality conditions,

\7j J_Wj and Vj J_Wj. (30)

The latticed"; associated with the nested subspagesan be constructed via a subdivision
of sublattices. A latticé; is decomposed intm disjoint sublattices via

M

ry=J O +t), (31)
i=1

whereti(” are translation vectors ifi;, and M; = det[D;]. We will make major use of
Eqg. (31) in our multidimensional lattice decomposition algorithm which is described
more detail in Section 3.3. The arguments of the scaling and wavelet functions in
two-scale relation are now scaled by the dilation mairjx

_1
Pk () = M; * > cr, Djwdjk(Djx — k)

~ _1 ~ ) (32)
Pik(¥) = M;j 2 > e, hjw@j(Djx — k)
and also for the wavelets,
1
Yik(X) = M; 237 Qjkdjk(Djx — K')
~J J,; kel Yi Nl j ’ 33)
Yik() =M * 3 er; Gikdik(Djx —K)
which, for a biorthogonal basis, obey the biorthogonality condition:
(l;jk(x) Sjjrﬁkkr 0
dx | . [Pi () Yjw(X)] = . (34)
/ [w,-ux)] ‘ : 0 8

Herehjy, 9u:jk, ﬁjk, andg,.jk € [>(T"j) are the dual and nondual filter coefficients.

The generalization to multiple dimensions of a multiresolution analysis usually procee
via a tensor product scheme. The tensor product representation of a higher dimensi
scaling spac¥ ; using one-dimensional scaling spasgsis created via

V;=ViQVig.-. @V} (35)

whereJ denotes scaling spaces separated bgales; i.e.Y ;_; is a space which is dilated
by a factor of two in all dimensions as compared/tp The dual spaces follow in analogy.
These spaces can be projected into the detail spaces using Eq. (4),

Vo= {Vii@Wi 1} ®{Vi @Wi 1} @ - ®{Vi @Wi}  (36)
J-1 J-1 J-1

- DW e P w oo { v DW @)
i=0 j=0 j=0

= Vo@wi» (38)
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where

= P woew,e oW, P vew.e..eW.H . (39)
{i1,J2.--Ja} {j2.--Ja}

Here we immediately see the problem which develops. The multidimensional wavelet fu
tions will be the products of one-dimensional wavelet functions of different resolutior
scales such as

Vak(X) = Vi (XD Yok (X2) - - - Vaky (Xa), (40)
where the{j,} € [0, J — 1]. Some of these wavelets mix small and large resolution scals
and will therefore be highly anisotropic. This may lead to a large degradation of their perf
mance at compressing functions, which will be shown in Section 4. The new multiwavel

are not constructed in this fashion, instead, diie level scaling space is decomposed into
N scaling spaces via

VP eV evP eV e vl (41)
with the corresponding detail spacwé”) given by the relations,
VP =vP P awP? and VP =V ew(Y,. (42)

Here J refers to scaling spaces separated\bgcales. Using Egs. (42) we can proj&ct
into the detail spaces,

vy =Vv§Y (43)
— Vi wy 44)
=Viaeo{WPe oWl P eowl} (45)

J
VA @ {Wa) OB W(N Y W(N> } ’ (46)

j=1
where we define the multiwavelet space

Wii=WPewWPe - awi; (47)

There is no mixing (products) of scales in this decomposition, instead there is a $dm o
distinct detail spaces per scale, which forms a direct link to the multiwavelet framewo
This will be discussed more in Section 3.2.
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3.1. Polynomial Interpolation on Lattices

Given the sublattic&”’ = D;T'j +t{", we can construct a polynomial interpolation,
H(Q(”) upon a restricted set of pomts This polynomial interpolation can be used to p
dict an approximation of the function, which, via the lifting scheme devised by Swelde
et al. [21, 33, 34], will allow the generation of a multiresolution analysis [23]. Building
polynomial interpolating filters i dimensions of ordeP requires that we can construct
a polynomial interpolation ifRY. In one dimension, polynomial interpolation always has ¢
Vandermonde matrix which is invertible [31]. However, in higher dimensions, for a pol
nomial interpolation of a given order, the Vandermonde matrix is not always invertible a
the system is either over or under determined. In this case, one may need either few
more interpolation points. However, the order of the polynomial interpolation is determin
not only by the number of interpolation points, but also by their configuration. For exau
ple, in general, three points iR? define a linear interpolation, but if the three points are
all co-linear, they define a quadratic interpolation. An elegant solution to the problem
polynomial interpolation in higher dimensions is provided by de Boor and Ron [17]. Fir:
they specify the configuration df points inRY, and then they find the minimal polynomial
space which spans it. The de Boor—Ron algorithm has been used throughout this wol
the construction of the polynomial interpolating filtersRA.

3.2. Construction of the Filters

Following the procedure outlined above, we can construct polynomial interpolati
multiwavelets from a nonstationary lifting scheme. We subdivide the scaling space (latti
into two subspaces (sublattices), use a suitable polynomial interpolation for the predict
of the lifting scheme, and subdivide the scaling space again, with possibly a different sul
vision or polynomial interpolation. The filters are constructed via the following procedur

e Separatethe lattice (scaling space) on scaléto two sublattices

Q(J) D: il
Q) =D;Tj +t (48)
=l uad.

e Construct a polynomial interpolationPy (x), around a poinpg € Q) = DT} + t;
for a restricted set of points on the disjoint sublattiz®’ = D;T';.

e Predict the value of the function on poipy € ©2,, using the polynomial interpolation
on Q. Since the filters are translationally invariant (apart from boundaries), the sa
polynomial interpolation can be used for every point on the la®@¢g. The scaling and
wavelet filters are given by

hik = 8.0 hjk =8k0+ ij’ (49)
Gik = dko— Pjk  Qjk =dk.0

wherePjc are the polynomial interpolating coefficients (PIC’s).

e Calculate the difference of the predicted value from the actual value of the functic
at pointpy, i.e., the wavelet coefficient (via tigy filter).

¢ Repeatthis procedure for the latticE;_; = Q.
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A MRA of an object, say a function dR% — R, using these filters can be performed
via the lifting scheme [21, 33, 34]. Running the above process backward will reconstr
the function; i.e., it performs the inverse wavelet transform. A similar scheme was us
by Kovecevic and Sweldens [21]. In their scheme each latliges usually different; i.e.,
there is no scale invariance. However, it is possible to regain partial scale invariance, nc
i = | +1, but as previously mentione@l,— j + N. This condition requires that

j+N

[[oi=2. (50)
i=j

which impliesDj = Dj,n andl'j.n = 3ITj; i.e., afterN dilation steps we return to the
starting lattice, but with all the directions dilated by a factor of 2. Instead of scale invarian
we have arN-scale invariance. Given that we split our lattices by a factor of 2, the minim:
N is the dimensionl of RY. However, it should be noted that in special cases it can be tr
that some subsets of the dilation matrices are the same.

To make the connection with multiwavelets we write down the two-scale relations k
tween the scaling functions on each subsequent subl&tfice

pP0= Y hyp@Dix—k)

kelp+to

pP0= Y hap®Dx—k)
kel +ty (51)

p™M0=" > hap®Dnx—k).

keln—1+tN-1

By back substituting each consecutive scaling function, Egs. (51) can easily be cast intc
multiwavelet from of the two-scale relation,

D) = Hd(2Ix — k), (52)

kEFO

with the corresponding wavelet relation,

W) =) Ged(2x — k). (53)

kéro
Here® andW are the vectors ofl different scaling and wavelet functions
&= (D92, ... o™ and ®=(y® y? . yN)
and the filters are

|-|k<1) 0 Sokite - 0
: : and Gy = : : . (54)

Hi = : . :
0 - RHW 0 R I
where

H" = > hu,...hi8(2k = Ky — Doknga — DaDnyakniz...)  (55)
{kl,kg...kN}
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and
N-1
tuec = Z ti 5 (56)
i=0

i.e., as a sum of translation vectors. The dual relations follow in analogy.

3.3. Decomposition of the Lattices

In a wavelet subdivision scheme one might intuitively start from a fine set and procee
split the set into wavelet and scaling subsets. However, in the multidimensional case th
not necessarily the most straightforward approach when constructing a MRA via the lifti
scheme. In the present case, we start from a course set and proceed via a series of |
translates and unions to a finer set, and then, after genefdtiatjices fromN translates,
deduce the dilation matrixes by reversing the procedure. Our procedure is based on Eq.
with the following lattice subdivision conditions:

e The integer translatép, are always at the bounds of, [0° cube. This restricts the set
of translation vectors to those which point from the origin to each cornedafimensional
cube.

e Points are never mapped into points; iR{) N Q) = {#}.

e The number of elements in the new lattice doubles at each step, which is automatic
obeyed if the first two conditions are met. This insures that

detD;] =M; =2 (57)

A lattice construction obeying these conditions will create a tree-like structure of allowal
translates. Our algorithm for constructing the lattice subdivision/uni@®fiis as follows:

ALGORIHM 1.

Start with a simple cubic latticel’y = 21 29, collect this lattice into the set of allowable
lattices{T"j—o}.

Loop from j = 1toj = d and do steps (a) and (b).

(a) For each lattice ifil";}, translate this lattice by each translate vettoof the set
of translate vectors to obtain a new latticf® = " + t,, wherel"{" is thenth
lattice in the sefI"; }.

() 10" NP = {#} addl'{” U™ to {I'j,4}, else discard.

Each “translate chain” will terminate at the simple cubic lattige= | 29, where a
translate chain is the set of allowable translates which take usIpto 'y = %Fo. The
dilation matrices can then be deduced from Eq. (25). Notice that without an autom:
procedure as described above a construction of a lattice decomposition in higher dimen:
is impossible in practice.

3.4. Examples

We will now show some examples of how algorithm 1 can be used to construct differ:
lattice decompositions. In the first example we show how to construct a set of decomposit
which leads to a separable multiwavelet basis in three dimensions. In the next two exam|
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we show how to construct sublattices which lead to nonseparable multiwavelets in th
and four dimensions.

3.4.1. Separable, Three-Dimensional, Polynomial Interpolating Multiwavelets

In RY the simplest lattice subdivision/union scheme is to use a set of orthogonal trans
vectors. We will follow the procedure outline in algorithm 1, but for the specific choice «
a translate chain,

{tO = (01 Oa 1)9 tl = (09 11 O)» t2 = (17 0» 0)}' (58)
To elaborate, let us start by the lattice defined by the lattice generator,

2 00
Lo= |0 2 0. (59)
00 2

This is the simple cubic lattic&y = Lo Z. Let us translate this lattice iy = (0, 0, 1) and
then generate the union b with the translated version of itself. This gives us the lattice
I'1 and its generatdr 4,

2 00
N=ToUTo+1ty, L1=[0 2 O0f. (60)
0 0 1

This is equivalent to subdividinD; into the two disjoint sublattices,

Qs =DiI'1 =T

(61)
2, = D1I'1 +to,
where
1 00
Di;=({0 1 O0f. (62)
0 0 2

Let us repeat this process for the next latfigeby translating byt; = (0, 1, 0). This give
us

0

0
No=T1Ul1+1t), L= 1 0}, (63)
01

O ON

which is the same as subdividiig into the two disjoint sublattices,

Qs =Dy =TI

(64)
Q, = Daol's 41y,
where
1 0 O
D=0 2 0 (65)
0 0 1
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Repeating this process a final time for by translating byt, = (1, 0, 0), we get

1 00
F3=T2UT2+1ty), Lz3={0 1 0}, (66)
0 0 1

which is the same as subdividing into the two disjoint sublattices,

Qs =D3l'3 =17

(67)
Qy = Dal'3 + 15,

where

D3 = (68)

O ON

0
1
0

= O O

We have now returned to the original lattice contracted by a factor of 2 in each directi
ie.,I'y = %I‘o. The filters obtained from this subdivision scheme are all one-dimension
aligned along coordinate directions. The multiwavelets are therefore products of o
dimentional functions, e.g., for the scaling functions,

#$(0) P, 00T, (V95,2
00 = | p7) | = | o5k 08Tk W5 2D | (69)
5% 00 855 0095 2y)$5%, (22)

and similarly for the wavelets and the dual functions. These separable multiwavelets are
tensor product wavelets; they do not mix scales and are easily generalized to any dimen

3.4.2. Nonseparable Three-Dimensional Polynomial Interpolating Multiwavelets

In the case of nonseparable multiwavelets, our implementation is more difficult. Let
again consider in three dimensions a simple cubic laffige= L (23, as seen in Fig. 4a,
with the lattice generator

2 0 0
Lo=|0 2 0]. (70)
00 2

Translatd g by to = (1, 1, 1) and generate the union of this new lattice with itself, as show
in Fig. 4b. This gives us a body centered cubic (BCC) lattice and lattice generator,

-1 1 1
N =ToUTo+ty), Li= 1 -1 1]. (71)
1 1 -1

This is equivalent to subdividing; into the two disjoint sublattices,
Qs =D =Ty

(72)
Qy = D1I'1 + 1o,
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where
011
Di=|(1 0 1]. (73)
110

We now translaté™; by t; = (0, 1, 1) and generate the union, as shown in Fig. 4c. Thit
gives us a stretched body centered cubic lattice (SBCC) with lattice generator,

10 O
oh=T1Ul1+t), L,=(0 1 1], (74)
01 -1

which is the same as subdividifi into the two disjoint sublattices,

Qs=DIr=1"

(75)
Q, = Doy + 1y,
where
1 0 1
D=|1 0 —1{. (76)
11 -1

Finally, we translatd™; by t; = (0, 0, 1) and then generate the union to obtain the lattice
shown in Fig. 4d. This gets us back to a simple cubic lattice with lattice generator,

1 00
3=T2UT2+1ty), Lz3=[{0 1 O0f, (77)
0 0 1

which is the same as subdividing into the two disjoint sublattices,

Qs =D3l'3=1"

(78)
Qy = Dal'3 + 1,
where
1 0 O
D= |0 1 1]|. (79)
01 -1

We have now returned to the original lattice, il& = %Fo, contracted by afactorof2ineach
direction, and withD;D,D3 = 2I. Tables I-lll give the PIC’s for each lattice refinement
in three dimensions, and Fig. 5 shows the placement of the points for the polynomn
interpolation. The number in parentheses is the interpolation point, and the number be
the parentheses is the number of interpolation points.
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TABLE |
The PIC's for the Three-Dimensional Filters: Cubic— BCC
Order  No. points Points Pro +1t
1 8 8(1)} { - % }
3 32 {8(1), 24(2)} {é—i, —6—14}
5 56 {8(1), 24(2), 24(3)} {59—:5'2 —51—](_32, 5i12}
7 88 {8(1), 24(2), 24(3), 8(5)} {% 7:071976’ %36 ,ngﬁ}

TABLE Il
The PIC's for the Three-Dimensional Filters: BCC — sBCC
Order  No. points Points Pr, +1t;
1 6 {2(2), 4(2)} { 3 12}
11
2 14 {2(2), 4(2), 8(3)} { VA E}
76 20 4 3
3 22 {2(2), 4(2), 8(3), 8(4)} { 176 176 176 71776}
156 48 6 8 1
4 32 {2(2), 4(2), 8(3), 8(4), 8(5)} { 384’ 384’ 384 384" @}
6486 2040 267 121
5 40 (21). 42, 8(3). 8(4), 85), 2(8). 8(1N) { 16064 16064 16064 16064
267 B 8 4 }
16064 16064 16064
TABLE 1l
The PIC’s for the Three-Dimensional Filters: sBCC— Cubic
Order  No. points Points Pr, +1t3
1 4 4(1) !
(41)) { 3 }
10 1
3 12 {4(2), 8(2)} {3—2 —3—2}
81 9 1
5 16 {4(1), 8(2), 4(3)} {2756 ~ 258" 2—56}

1404 231 34 27 3
7 32 {4(1). 8(2), 4(3), 8(4), 8(5)} {m ~ 2096 2096 2096 —m}
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(a) (b)

8

FIG. 4. The lattice translates used in constructing the three-dimensional, nonseparable polynomial inte|
lating multiwavelet.

b
7
®
7
4 2 4
% 2 4
OTRUL 3
f

L0210 /10 710 7%
@@@0@2%

FIG. 5. Placement of the points for the polynomial interpolation. (a) Points for the BCC filter, (b) points fc
the SBCC filter, and (c) points for the cubic filter.
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3.4.3. Nonseparable, Four-Dimensional, Polynomial Interpolating Multiwavelets

The procedure that we have devised in the previous section can be extended to any di
sion. To show this we also implement our construction in four dimensions. We emphas
that the only constraints are that the lattice translate we choose cannot map lattice p
into lattice points, and that we double the number of points at each step. This was €
to visualize in three dimensions, but it is difficult in four dimensions. However, by usir
algorithm 1 outlined in the previous section, it is straightforward to construct lattice deco
positions for the multiresolution analysis. Let us start by the laftice- L oZ* defined by
the lattice generator,

Lo (80)

QO oOoON
O ON O
oON OO
N O OO

This is the hyper-cubic lattice. Translate this latticethy= (1, 1, 1, 1) and generate the
union. This give us a four-dimensional analog to the three-dimensional BCC lattice w
lattice generator,

-1 1 1 1
1=ToUMo+1t0), Li= 1 _11 _11 ::II: , (81)
1 1 1 1
which is the same as subdividiig into the two disjoint sublattices,
oDt )
where
-1 0 0 1
b=l o 4 ®

Next, translaté™; byt; = (0, 1, 0, 1) and generate the union. This gives a four-dimensiona
rotated hyper-cubic lattice with lattice generator,

10 1 O
01 0 1
e=TuMi+t), La= |, o 1 4| (84)
01 0 -1
which is the same as subdividiig into the two disjoint sublattices,
Qs=D, =T
s 212 1 (85)

Qw = DZFZ + tla
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where
01 -1 0
10 0 -1
11 O 0

Now, translaté™, byt, = (0, 0, 1, 1) and generate the union. This gives a four-dimensional
rotated hyper-BCC lattice with lattice generator,

01 -1 o0
10 0 -1
F3=TUT2+12), Lz= 01 1 ol° (87)
11 0 O
which is the same as subdividing into the two disjoint sublattices,
Qs =D3l'3=T
S 313 2 (88)
Qy = D3l'3 + 1,
where
-1 0 0 1
0 -1 0 1
D:=19 o0 -1 1 (89)

1 1 1 -1

Finally, let us translat&s by t3 = (0, 0, 0, 1) and generate the union. This gives us back
a hyper-cubic lattice with lattice generator,

1 000
0100
Ng=T3ul3+1t3), Ls= o0 1 ol (90)
0 001
which is the same as subdividifigy into the two disjoint sublattices,
Qs =DyI'y =T
5 41 4 3 (91)
Qy = Dyl'g + t3,
where
01 -1 0
10 0 -1
Da=lo 1 1 o ®2)
11 0 O

Once agairD,D,D3D4 = 21. Tables IV=VII give the PIC’s for each lattice refinement in
four dimensions. The number before the braces is how many points there are with tt
coordinates. The number in braces is the placement of the points, where we would aj
all cyclic permutations to this point, i.e.,

1, 0, 0, 0) — {(£1, 0, 0, 0), (0, £1, O, 0), (O, 0, +1, 0), (O, O, O, £1)}. (93)
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TABLE IV
The PIC’s for the Four-Dimensional Filters: Hyper-Cubic — Hyper-BCC

Order  No. points Points Pro+y
1
1 8 {8(1,0,0,0)} { é}
12 1
3 40 8(1.0,0,0), 32(1, 1, 1, 0)) {6—4, —&}
114 7 1
1 21,1, 1 48(2, 1 _— -
5 88 (8(1,0.0,0),321 1 1,0),482 1,0,0)) {640, . 640}

TABLE V
The PIC’s for the Four-Dimensional Filters: Hyper-BCC — Rotated Hyper-Cubic

Order No. points Points Pri+t,
1 16 {16(1, 1,0, 0)} { 1 }
B 16
12 1
3 80 {16(1, 1,0, 0), 642, 1, 1,0)} {@ —@}

102 11 1 1
5 176 {16(11,0,0),642, 1,1,0), 722, 2, 1, 1), 243, 1, 0, 0)} {@’ S @}

TABLE VI
The PIC’s for the Four-Dimensional Filters: Rotated Hyper-Cubic — Rotated Hyper-BCC

Order No. points Points Pr, 1
1
1 8 {8(1,0, 1,0} {é}
12 1
4 1,0,1 22,1, 1 —, -
3 0 (8(1,0,1,0),322,1,1,0)) {64, 64}
114 7 1 1
5 88 8(1,0,1,0),32(2,1,1,0),36(2,2,1,1),12(3,1,0,0 —_— =, — =
(8(1,0,1,0,322,1,1,0), 362 2, 1, 1), 12(3, 1, 0, 0)) {640, e g 640}

TABLE VI
The PIC's for the Four-Dimensional Filters: Rotated
Hyper-BCC — Hyper-Cubic

Order  No. points Points Proy,
1
1 16 {16(1,1,1, 1)} {é}
12 1
3 80 (161,111, 643, 1,1. 1) {5 138}

102 11 1
5 176 {16(1,1,1,1),64(3,1,1,1),96(3, 3, 1, 1)} { }

1024 1024’ 1024
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4. PROPERTIES OF MULTIDIMENSIONAL MULTIWAVELETS

In this section, we compare the separable and honseparable multiwavelets with the te
product wavelets regarding their performance at compressing [7] several discontinuous
functions, such as tetrahedrons, cubes, or spheres. These types of test functions ai
“worst” case that could happen, for example, in electronic structure problems, as well a
many other phenomena in physics. We may thus judge how well a wavelet-based variati
scheme will perform based upon how well the multiwavelets represent these discontinu
test functions.

4.1. Compression of Functions Using Multidimensional Multiwavelets

First, let us present some nomenclature:

e {P1, P,, ... Py} describes the order of the polynomial interpolation for the nonsepar
ble multiwavelets, wher®, is the polynomial order of thgth filter.

o {{Pi}® {P.} & --- & {Py}} describes the order of the polynomial interpolation for the
separable multiwavelets, whelReis the polynomial order of thiéth one-dimensional filter.

e {{P1} ®{P} ®---® {Py}} describes the order of the polynomial interpolation for the
tensor product wavelets, wheleis the polynomial order of thigth one-dimensional filter.

e Compression ratioGR),

Nuy
CR= [1 — zjmax}, (94)

where N,, is the number of wavelet coefficients above the tolerancand Jax is the
maximum resolution scale.
e Reconstruction erroRE)

_ JaxIf00 = fr0?

RE , 95
Sy dx [ f(x)2 93)
where the reconstructed function is
j:Jmax
fROO = D sik®a()+ D mk¥k(X), (96)
kEFJD j=Jo.ker;
and
{njk} = {ldjk| > €} (97)

is the restricted set of coefficients which are above the tolerance

4.1.1. Compression of Functions in Two Dimensions

Figure 6 shows an analysis of the reconstruction error vs compression ratio for tv
dimensional multiwavelets of ord€r, 7} and{{7} & {7}} as compared to a tensor product
wavelet of orde{{7} ® {7}} for the discontinuous test functions,

1 ifx e circle 1 if x € triangle
D (x) = @ (x) =
fresi) = { 0 otherwise "¢ fiea®) = { 0 otherwise (%8)
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FIG. 6. The reconstruction error compression ratio for the nonseparable and separable, two-dimensi
multiwavelet of ordef7, 7} and{{7} @ {7}} for the discontinuous test functiorfg,q(x) and fZ(x) as compared
to the tensor product wavelet of ordgr} ® {7}}.

For almost the entire range of compression, the nonseparable and separable two-dimen:
multiwavelets are an order of magnitude smaller in the reconstruction error than the t
sor product wavelets. Since both the separable and nonseparable wavelets have a s
performance at compressing discontinuous functions, we will focus on the nonsepar
wavelets in the following.
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FIG. 7. The reconstruction error vs angle for the nonseparable two-dimensional multiwavelet ofordler
and the tensor product wavelet of polynomial orfld} ® {7}} for the test functionfest(X, ¢).

The reduction of performance of the tensor product wavelets is due to the strong mix
of scales which biases these wavelets along coordinate directions. To demonstrate this |
consider how the tensor wavelets and nonseparable multiwavelets compress the test fun

1 if x € square rotated by

0 otherwise ’ (99)

ftesl(X, ¢) = {
where the number of wavelet componeNtsis fixed by adjusting the toleraneeFigure 7
shows the reconstruction error vs angle for our two-dimensional multiwavelets of orc
{7, 7} as compared to a tensor product wavelet of off&r® {7}}. The number of wavelet
components was fixed tbl,, = 2000+ 5. What can be seen from the figure is that the
tensor product wavelet is very sensitive to the squares orientation, whereas the nonsepa
multiwavelets show very little dependence on the squares orientation. This illustrates
isotropic behavior of the multiwavelets.

4.1.2. Compression of Functions in Three Dimensions

Figure 8 shows an analysis of the reconstruction error vs compression ratio for our thi
dimensional multiwavelets of ordgv, 7, 7} as compared to a tensor product wavelet of
order{{7} ® {7} ® {7}} for the discontinuous test functions

1 if x e tetrahedron 1 if x € sphere
3 (y) — @ (y) —
fresi() = {0 otherwise and fres() = { 0 otherwise 90

In both cases, our nonseparable multiwavelets compress the test functions significe
better then the tensor product wavelet of comparable order. The gain in the degree at w
the nonseparable multiwavelets outperform the tensor wavelet is even higher than th:
two dimensions. This trend should continue in higher dimensions and is due to the increz
scale mixing of the tensor product wavelets.
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FIG. 8. The reconstruction error vs compression ratio for the nonseparable three-dimensional multiwav
of order{7, 7,7} and the tensor product wavelet of ord¢¥} ® {7} ® {7}} for the test functionsf&¢(x) and

festX).
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4.2. lIsotropy of the Multidimensional Multiwavelets

Let us define a measure to determine the isotropy of these wavelets. Consider

Jy AR A2 [y ™ (R, 2) — p&uR)|?
Jy dR A2 [y ™ (R, @)|?

ISOy] =1— (101)

where
YR = = JRETAGED (102)
2 Jo

Ifthe functionis radial symmetric, this measure is one, and if the function becomes nonra
symmetric, then this measure approaches zero. In the next sections we use this meas
show that the multiwavelets are more isotropic than the tensor product wavelets.

4.2.1. Three-Dimensional Polynomial Interpolating Multiwavelet

To illustrate the isotropy and smoothness of a nonseparable multiwavelet in th
dimensions, we present Figs. 9 and 10. Figure 9a shows an iso-surface plot for the th
dimensional multiwavelety ¥ (x) of order {7, 7, 7}. Figures 9b and 9c show a surface
and contour plot of this wavelet for the= 0 plane. This wavelet is fairly isotropic and
smooth; the smoothness is due to the high degree of the polynomial interpolation, and
isotropy is due to the symmetry of the lattice decomposition. Figure 10 shows the rac
plot of the same wavelet function of ordgt, 7, 7} in the three different symmetry direc-
tions{x, y=0, z=0}, {x =y, z= 0}, and{x = y = z}. As can be seen from Fig. 10,
as the radius approaches zero the three-dimensional multiwavelet becomes more isotr
This should be contrasted with the tensor product wavelet in which this does not h
pen. Generally the tensor product wavelet will remain anisotropic as the radius approac
zero.

Table VIII shows the isotropy measure of our three-dimensional nonseparable and ¢
arable multiwavelet of ordef7, 7, 7} and {{7} @ {7} & {7}} compared to tensor product
wavelets of ordef{7} ® {7} ® {7}}. The tensor product wavelets are reasonably isotropi
as long as the difference in thiescales are not too large but become very anisotropi
(IS y] < 0.50) once the difference in thg-scales exceeds about 2. However, the mul
tiwavelets are isotropi€cISO ] > 0.50) in all cases, especially the nonseparable multi-
wavelets(ISO ] > 0.75).

4.2.2. Four-Dimensional, Polynomial Interpolating Multiwavelets

We present Figs. 11 and 12 to further illustrate the isotropy and smoothness of the f
dimensional nonseparable multiwavelet. Figure 11 is a surface plot for the four-dimensic
multiwavelety® (x) of order {5, 5, 5,5} for the z= 0, t = 0 plane. Figure 12 shows
the radial plot of the same wavelet function of ordér5, 5, 5} in the four symmetry
directions{x, y=0, z=0, t=0}, {x=y, z=0, t =0}, x=y =12 t =0}, and
{x =y =z =t}. Because the order of the polynomial interpolation is not as large as
was in the three-dimensional case, this wavelet is not as smooth as its three-dimensi
counterpart. However, it is more isotropic. This can be clearly seen in Fig. 12, where
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Y(x,y,z)

FIG.9. (a)Aniso-surface plot of the three-dimensional nonseparable multivag@léx) for order{7, 7, 7}.
Also shown, (b) and (c), a density and surface plot ofzke 0 plane for this wavelet.
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FIG. 10. A radial plot of the three-dimensional nonseparable multiwawgl&ix) of order{7, 7, 7} in the
three symmetry directions.

relative degree of isotropy around the core region is greater than in the three-dimensi
case.

In Table IX we show the isotropy measure of the four-dimensional nonseparable mu
wavelet of ordef5, 5, 5, 5}. Again, as the isotropy measure indicates, this multiwavelet i
even more isotropic than its three-dimensional counterpart.

TABLE VIII
The Isotropy Measure for Comparison of the Multiwavelets
with the Tensor Product Wavelets

Tensor-product wavelet Order IS v]
Y3(X)¥3(Y)¥3(2) {ne {77} 0.8116
Ya(X)Ya(Y)¥a(2) {7 {7 ®{7}} 0.5094
Ya(X)Va(Y)¥s(2) {ne {7 {7} 0.3452

Separable multiwavelet Order IS v]

¥ (X, Y.2) {Me e 0.8116

(X, y.2) {(MeMe 0.5196

¥ (X, Y. 2) (e e (7 0.5094
Nonseparable multiwavelet Order IS v]
¥s (X, Y, 2) (7.7.7) 0.9433
P (X, Y, 2) (7.7.7) 0.8585

v (%, y,2) (7.7,7) 0.7531
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FIG. 11. A surface plot of the four-dimensional nonseparable multiwawgl&i(x) of order{5, 5, 5, 5} for
thez = 0 andt = O plane.
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FIG. 12. A radial plot of the four-dimensional nonseparable multivavelgt(x) of order{5, 5, 5, 5} in the
four symmetry directions.
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TABLE IX
The Isotropy Measure for the Four-
Dimensional Nonseparable Multiwavelets of
Order {5,5,5,5

Nonseparable multiwavelet IS v]
U (X, Y, 2, 1) 0.9612
v (X, y, z,1) 0.8765
P Xy, 2, 1) 0.9615
v (x, Y.z, 1) 0.8759

5. CONCLUSIONS

Using the lifting scheme devised by Sweldensl.[21, 33, 34] and polynomial interpo-
lation inRY [17], we have constructed nonseparable and separable polynomial interpola
multiwavelets in multiple dimensions. This was done by devising a scheme for periodice
subdividing multi-dimensional lattices such thathh= d number of steps we return to
the original lattice scaled by a factor of 2 in the coordinate directions. The scheme v
demonstrated by constructing three-dimensional separable and nonseparable multiway
as well as four-dimensional nonseparable multiwavelets. Finally, the compressibility v
investigated and analyzed in terms of the isotropy of the wavelets. It was found that
multiwavelets are more isotropic and efficient at compressing functions as compared to
tensor product wavelets of similar order.

In the appendices, we present two practical algorithms which are a natural outcc
of the presented work (i) the in-place inverse wavelet transform which allows the ¢
culation of the value of a function at a point, where the function is represented in t
wavelet basis and (i) the top—down algorithm which allows for the adaptive wavelet an
ysis of a function, where as an example of the efficiency of the top—down algorithm, \
present the wavelet transform of the potential generated by 32 arbitrarily placed pc
charges.

It is possible to extend the presented methodology toward developing new classe
wavelets. One possible extension of the presented research is in constructing orthog
multiwavelets. Another area of interest is constructing biorthogonal multiwavelets wi
specific properties, such as ultra-sparse operator representations [12, 18]. We are wol
toward this end by constructing a biorthogonal multiwavelet basis which diagonalizes
Poisson operator [35]. In the immediate future, we are implementing the separable n
tiwavelets into a generalized object-oriented code for use in solving integral—different
equations. This library should be partially suited for systems in which multiscale phenome
are important, i.e., the electronic structure of condensed matter systems.

APPENDIX A

In-Place Inverse Wavelet Transform

Given a multidimensional wavelet representation of a function, Eg. (96), we would lil
to devise an algorithm for calculating the function value at some poifithe standard
approach is to sum over all the expansion coefficients multiplied by the basis function:
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point x. However, this can be extremely time consuming for large basis sets, and for
wavelet basis this approach does not take advantage of the wavelets’ locality. Instead
have devised an algorithm for calculating the value of functions, represented in the wav
basis, at poink which takes advantage of the wavelets’ locality. This algorithm, instee
of scalingO(N,,), whereN,, is the number of wavelet coefficients, scal@6Jnax), Where
Jmax is the finest scale of the wavelet expansion. The algorithm takes advantage of
wavelet locality by calculating the inverse wavelet transform only in a region necessar)
continue onto the next scale; this is coded as follows:

ALGORITHM 2 (Inverse WTR X, WTR(f(x)))).

1. begin
2. j=0
3. while j < jmaxdo
4, calculate Xrange™ 2 SUHY j 2ix)}
5. loop over k
6. if [k — 21X|| < XRange
7. calculates,—yk < Sj_1k — Z'é‘“n‘t} Uj,ldjfl,kq k e T
8. calculatesj,k — djflﬁk + ZlEFj Pj7|Sj,1_k7| kel;+t;
9. end if
10. end loop
11. end while
12. end
APPENDIX B

Top—Down Algorithm

We have implemented a practical algorithm which calculates only the significant wave
coefficients, above some predetermined thresholaf,a function. The traditional approach
is to use the pyramid algorithm [10], which calculates all the wavelet coefficients from
chosen finest scale of resolution up to the coarsest. This can be highly inefficient becat
large percentage of the coefficients are usually discarded. Here we have devised a me
for eliminating this problem, via a top—down algorithm [38].

The basis philosophy of the top—down algorithm is to use the coefficients at jscals
to estimate the coefficients at the finer scal¢ 1; this is possible because the wavelet
coefficients at scal¢ are usually related to the wavelet coefficients at s¢ajel via,

dijix ~27Pd 0 ke sup{l/?j”ﬁ} (B.1)

whereP is the number of vanishing moments of the wavelet, and the fundti@n € L.
This relation suggests an algorithm for calculating the significant wavelet coefficients.

1. Calculate all the wavelets coefficients on scglg, where jmin is a resolution scale
which captures the “relevant” structure of the functib¢x).

2. Keep only those wavelet coefficients above some predetermined thresi®ittte
the wavelets we use are interpolating, no prefiltering is necessary.

3. For each wavelet coefficient at scglecalculate all wavelets coefficients at scale
j + 1 which are within the support of the wavelets at sgale
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4. Keep only the wavelet coefficients above the threshold
5. Repeat this process using the wavelet coefficients at gealeto deduce the wavelet
coefficients at scal¢ + 2, etc.

In pseudo-code:
ALGORITHM 3 (TopDownWTR(¢, jmin, jmax T (X))).

1. begin

2. J = jmin: calculate {{do}, . .. {dj,,k}}

3 while (j < jmaxand Ny # 0) do

4 loop over k € {dj «}

5 loop over k' e sup(d; «]

6. calculatedj 1 =Y 1 8411 f(X—K' — 1)
7 if |dj+1’kr| <€

8 storedj 1w — {djt1k}: N\}\, — N\}V +1
9

. end if
10. end loop
11. end loop
12. j—>j+1
13. end while
14. return {{dox}, {du}, ... {djk}}
15. end

This algorithm has several advantages over the traditional approach,

e The time for the transform scales likeé(Ny ), whereNy is the number of wavelet
coefficients above the threshaid

e It is possible to calculate the wavelet coefficients to very fine scales of resolutic
where, in principle, no maximum scale is assumed.

e Function structures are adaptively resolved where they are needed.

However, one disadvantage of this algorithm is that there is no guarantee of obtz
ing all the wavelet coefficients above the threshglde., some details could be missed.
One remedy for this is to decrease the threshold. Another remedy of this problem is
calculate theL, norm of the function and th&, norm of the wavelet representation
of the function. If the difference between these two norms is greater than the thre
old, then some coefficients have been missed, and the transform has to be restartec
finer scale. However, for most problems in physics we have to approximate knowlec
of the function’s behavior, and all the “relevant” features are already known. For exa
ple, Fig. 13 shows a slice of a wavelet transform of 32 arbitrarily placed point charge
ie.,

32
1
frest¥) = ) x—x] Nel. 11, (B.2)

i=1

Eight of the charges lie within the cut plane. Both the size of the circles and the col
encode the scale on which the particular wavelet resides, blue being coarse and red t
fine. We also include a contour plot of the potential generated by these 32 point charge
emphasize the adaptive placements of the wavelets. Itis easily seen that the above algo
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FIG. 13. The placement of the multiwavelets on the- O plane for 32 arbitrarily placed point charges in a
cubic box. Also shown is a contour plot of the potential.

very nicely resolves all the relevant structures of this function. It should also be notec
what scale we were able to do the analygig,x = 38 or 28 number of points. This would
normally take a 500-MHz processor aboét(ZPU years to calculate, whereas the top—dowr
algorithm took about 10 CPU min.
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